Fast-and-Light Stochastic ADMM
نویسندگان
چکیده
The alternating direction method of multipliers (ADMM) is a powerful optimization solver in machine learning. Recently, stochastic ADMM has been integrated with variance reduction methods for stochastic gradient, leading to SAG-ADMM and SDCA-ADMM that have fast convergence rates and low iteration complexities. However, their space requirements can still be high. In this paper, we propose an integration of ADMM with the method of stochastic variance reduced gradient (SVRG). Unlike another recent integration attempt called SCAS-ADMM, the proposed algorithm retains the fast convergence benefits of SAG-ADMM and SDCA-ADMM, but is more advantageous in that its storage requirement is very low, even independent of the sample size n. Experimental results demonstrate that it is as fast as SAG-ADMM and SDCA-ADMM, much faster than SCAS-ADMM, and can be used on much bigger data sets.
منابع مشابه
Stochastic Variance-Reduced ADMM
The alternating direction method of multipliers (ADMM) is a powerful optimization solver in machine learning. Recently, stochastic ADMM has been integrated with variance reduction methods for stochastic gradient, leading to SAGADMM and SDCA-ADMM that have fast convergence rates and low iteration complexities. However, their space requirements can still be high. In this paper, we propose an inte...
متن کاملFast Stochastic Alternating Direction Method of Multipliers
In this paper, we propose a new stochastic alternating direction method of multipliers (ADMM) algorithm, which incrementally approximates the full gradient in the linearized ADMM formulation. Besides having a low per-iteration complexity as existing stochastic ADMM algorithms, the proposed algorithm improves the convergence rate on convex problems from O ( 1 √ T ) to O ( 1 T ) , where T is the ...
متن کاملAccelerated Stochastic ADMM with Variance Reduction
Alternating Direction Method of Multipliers (ADMM) is a popular method in solving Machine Learning problems. Stochastic ADMM was firstly proposed in order to reduce the per iteration computational complexity, which is more suitable for big data problems. Recently, variance reduction techniques have been integrated with stochastic ADMM in order to get a fast convergence rate, such as SAG-ADMM an...
متن کاملFast Stochastic Variance Reduced ADMM for Stochastic Composition Optimization
We consider the stochastic composition optimization problem proposed in [17], which has applications ranging from estimation to statistical and machine learning. We propose the first ADMM-based algorithm named com-SVRADMM, and show that com-SVR-ADMM converges linearly for strongly convex and Lipschitz smooth objectives, and has a convergence rate of O(logS/S), which improves upon the O(S−4/9) r...
متن کاملScalable Stochastic Alternating Direction Method of Multipliers
Alternating direction method of multipliers (ADMM) has been widely used in many applications due to its promising performance to solve complex regularization problems and large-scale distributed optimization problems. Stochastic ADMM, which visits only one sample or a mini-batch of samples each time, has recently been proved to achieve better performance than batch ADMM. However, most stochasti...
متن کامل